Free Novel Read

Lives of a Cell Page 8


  It is the information carried by the bacteria that we cannot abide.

  The gram-negative bacteria are the best examples of this. They display lipopolysaccharide endotoxin in their walls, and these macromolecules are read by our tissues as the very worst of bad news. When we sense lipopolysaccharide, we are likely to turn on every defense at our disposal; we will bomb, defoliate, blockade, seal off, and destroy all the tissues in the area. Leukocytes become more actively phagocytic, release lysosomal enzymes, turn sticky, and aggregate together in dense masses, occluding capillaries and shutting off the blood supply. Complement is switched on at the right point in its sequence to release chemotactic signals, calling in leukocytes from everywhere. Vessels become hyperreactive to epinephrine so that physiologic concentrations suddenly possess necrotizing properties. Pyrogen is released from leukocytes, adding fever to hemorrhage, necrosis, and shock. It is a shambles.

  All of this seems unnecessary, panic-driven. There is nothing intrinsically poisonous about endotoxin, but it must look awful, or feel awful, when sensed by cells. Cells believe that it signifies the presence of gram-negative bacteria, and they will stop at nothing to avoid this threat.

  I used to think that only the most highly developed, civilized animals could be fooled in this way, but it is not so. The horseshoe crab is a primitive fossil of a beast, ancient and uncitified, but he is just as vulnerable to disorganization by endotoxin as a rabbit or a man. Bang has shown that an injection of a very small dose into the body cavity will cause the aggregation of hemocytes in ponderous, immovable masses that block the vascular channels, and a gelatinous clot brings the circulation to a standstill. It is now known that a limulus clotting system, perhaps ancestral to ours, is centrally involved in the reaction. Extracts of the hemocytes can be made to jell by adding extremely small amounts of endotoxin. The self-disintegration of the whole animal that follows a systemic injection can be interpreted as a well-intentioned but lethal error. The mechanism is itself quite a good one, when used with precision and restraint, admirably designed for coping with intrusion by a single bacterium: the hemocyte would be attracted to the site, extrude the coagulable protein, the microorganism would be entrapped and immobilized, and the thing would be finished. It is when confronted by the overwhelming signal of free molecules of endotoxin, evoking memories of vibrios in great numbers, that the limulus flies into panic, launches all his defenses at once, and destroys himself.

  It is, basically, a response to propaganda, something like the panic-producing pheromones that slave-taking ants release to disorganize the colonies of their prey.

  I think it likely that many of our diseases work in this way. Sometimes, the mechanisms used for overkill are immunologic, but often, as in the limulus model, they are more primitive kinds of memory. We tear ourselves to pieces because of symbols, and we are more vulnerable to this than to any host of predators. We are, in effect, at the mercy of our own Pentagons, most of the time.

  YOUR VERY GOOD HEALTH

  We spend $80 billion a year on health, as we keep reminding ourselves, or is it now $90 billion? Whichever, it is a shocking sum, and just to mention it is to suggest the presence of a vast, powerful enterprise, intricately organized and coordinated. It is, however, a bewildering, essentially scatterbrained kind of business, expanding steadily without being planned or run by anyone in particular. Whatever sum we spent last year was only discovered after we’d spent it, and nobody can be sure what next year’s bill will be. The social scientists, attracted by problems of this magnitude, are beginning to swarm in from all quarters to take a closer look, and the economists are all over the place, pursing their lips and shaking their heads, shipping more and more data off to the computers, trying to decide whether this is a proper industry or a house of IBM cards. There doesn’t seem to be any doubt about the amount of money being spent, but it is less certain where it goes, and for what.

  It has become something of a convenience to refer to the whole endeavor as the “Health Industry.” This provides the illusion that it is in a general way all one thing, and that it turns out, on demand, a single, unambiguous product, which is health. Thus, health care has become the new name for medicine. Health-care delivery is what doctors now do, along with hospitals and the other professionals who work with doctors, now known collectively as the health providers. The patients have become health consumers. Once you start on this line, there’s no stopping. Just recently, to correct some of the various flaws, inequities, logistic defects, and near-bankruptcies in today’s health-care delivery system, the government has officially invented new institutions called Health Maintenance Organizations, already known familiarly as HMO’s, spreading out across the country like post offices, ready to distribute in neat packages, as though from a huge, newly stocked inventory, health.

  Sooner or later, we are bound to get into trouble with this word. It is too solid and unequivocal a term to be used as a euphemism and this seems to be what we are attempting. I am worried that we may be overdoing it, taxing its meaning, to conceal an unmentionable reality that we’ve somehow agreed not to talk about in public. It won’t work. Illness and death still exist and cannot be hidden. We are still beset by plain diseases, and we do not control them; they are loose on their own, afflicting us unpredictably and haphazardly. We are only able to deal with them when they have made their appearance, and we must use the methods of medical care for this, as best we can, for better or worse.

  It would be a better world if this were not true, but the fact is that diseases do not develop just because of carelessness about the preservation of health. We do not become sick only because of a failure of vigilance. Most illnesses, especially the major ones, are blind accidents that we have no idea how to prevent. We are really not all that good at preventing disease or preserving health—not yet anyway—and we are not likely to be until we have learned a great deal about disease mechanisms.

  There is disagreement on this point, of course. Some of the believers among us are convinced that once we get a health-care delivery system that really works, the country might become a sort of gigantic spa, offering, like the labels on European mineral-water bottles, preventives for everything from weak kidneys to moroseness.

  It is a surprise that we haven’t already learned that the word is a fallible incantation. Several decades of mental health have not made schizophrenia go away, nor has it been established that a community mental-health center can yet maintain the mental health of a community. These admirable institutions are demonstrably useful for the management of certain forms of mental disease, but that is another matter.

  My complaint about the terms is that they sound too much like firm promises. A Health Maintenance Organization, if well organized and financed, will have the best features of a clinic and hospital and should be of value to any community, but the people will expect it to live up to its new name. It will become, with the sign over its door, an official institution for the distribution of health, and if intractable heart disease develops in anyone thereafter, as it surely will (or multiple sclerosis, or rheumatoid arthritis, or the majority of cancers that can neither be prevented nor cured, or chronic nephritis, or stroke, or moroseness), the people will begin looking sidelong and asking questions in a low voice.

  Meanwhile, we are paying too little attention, and respect, to the built-in durability and sheer power of the human organism. Its surest tendency is toward stability and balance. It is a distortion, with something profoundly disloyal about it, to picture the human being as a teetering, fallible contraption, always needing watching and patching, always on the verge of flapping to pieces; this is the doctrine that people hear most often, and most eloquently, on all our information media. We ought to be developing a much better system for general education about human health, with more curricular time for acknowledgment, and even some celebration, of the absolute marvel of good health that is the real lot of most of us, most of the time.

  T
he familiar questions about the needs of the future in medicine are still before us. What items should be available, optimally, in an ideal health-care delivery system? How do you estimate the total need, per patient per year, for doctors, nurses, drugs, laboratory tests, hospital beds, x-rays, and so forth, in the best of rational worlds? My suggestion for a new way to develop answers is to examine, in detail, the ways in which the various parts of today’s medical-care technology are used, from one day to the next, by the most sophisticated, knowledgeable, and presumably satisfied consumers who now have full access to the system—namely, the well-trained, experienced, middle-aged, married-with-family internists.

  I could design the questionnaire myself, I think. How many times in the last five years have the members of your family, including yourself, had any kind of laboratory test? How many complete physical examinations? X-rays? Electrocardiograms? How often, in a year’s turning, have you prescribed antibiotics of any kind for yourself or your family? How many hospitalizations? How much surgery? How many consultations with a psychiatrist? How many formal visits to a doctor, any doctor, including yourself?

  I will bet that if you got this kind of information, and added everything up, you would find a quite different set of figures from the ones now being projected in official circles for the population at large. I have tried it already, in an unscientific way, by asking around among my friends. My data, still soft but fairly consistent, reveal that none of my internist friends have had a routine physical examination since military service; very few have been x-rayed except by dentists; almost all have resisted surgery; laboratory tests for anyone in the family are extremely rare. They use a lot of aspirin, but they seem to write very few prescriptions and almost never treat family fever with antibiotics. This is not to say that they do not become ill; these families have the same incidence of chiefly respiratory and gastrointestinal illness as everyone else, the same number of anxieties and bizarre notions, and the same number—on balance, a small number—of frightening or devastating diseases.

  It will be protested that internists and their households are really full-time captive patients and cannot fairly be compared to the rest of the population. As each member of the family appears at the breakfast table, the encounter is, in effect, a house-call. The father is, in the liveliest sense, a family doctor. This is true, but all the more reason for expecting optimal use to be made of the full range of medicine’s technology. There is no problem of access, the entire health-care delivery system is immediately at hand, and the cost of all items is surely less than that for nonmedical families. All the usual constraints that limit the use of medical care by the general population are absent.

  If my hunch, based on the small sample of professional friends, is correct, these people appear to use modern medicine quite differently from the ways in which we have systematically been educating the public over the last few decades. It cannot be explained away as an instance of shoemakers’ children going without shoes. Doctors’ families do tend to complain that they receive less medical attention than their friends and neighbors, but they seem a normal, generally healthy lot, with a remarkably low incidence of iatrogenic illness.

  The great secret, known to internists and learned early in marriage by internists’ wives, but still hidden from the general public, is that most things get better by themselves. Most things, in fact, are better by morning.

  It is conceivable that we might be able to provide good medical care for everyone needing it, in a new system designed to assure equity, provided we can restrain ourselves, or our computers, from designing a system in which all 200 million of us are assumed to be in constant peril of failed health every day of our lives. In the same sense that our judicial system presumes us to be innocent until proved guilty, a medical-care system may work best if it starts with the presumption that most people are healthy. Left to themselves, computers may try to do it in the opposite way, taking it as given that some sort of direct, continual, professional intervention is required all the time to maintain the health of each citizen, and we will end up spending all our money on nothing but that. Meanwhile, there is a long list of other things to do if we are to change the way we live together, especially in our cities, in time. Social health is another kind of problem, more complex and urgent, and there will be other bills to pay.

  SOCIAL TALK

  Not all social animals are social with the same degree of commitment. In some species, the members are so tied to each other and interdependent as to seem the loosely conjoined cells of a tissue. The social insects are like this; they move, and live all their lives, in a mass; a beehive is a spherical animal. In other species, less compulsively social, the members make their homes together, pool resources, travel in packs or schools, and share the food, but any single one can survive solitary, detached from the rest. Others are social only in the sense of being more or less congenial, meeting from time to time in committees, using social gatherings as ad hoc occasions for feeding and breeding. Some animals simply nod at each other in passing, never reaching even a first-name relationship.

  It is not a simple thing to decide where we fit, for at one time or another in our lives we manage to organize in every imaginable social arrangement. We are as interdependent, especially in our cities, as bees or ants, yet we can detach if we wish and go live alone in the woods, in theory anyway. We feed and look after each other, constructing elaborate systems for this, even including vending machines to dispense ice cream in gas stations, but we also have numerous books to tell us how to live off the land. We cluster in family groups, but we tend, unpredictably, to turn on each other and fight as if we were different species. Collectively, we hanker to accumulate all the information in the universe and distribute it around among ourselves as though it were a kind of essential foodstuff, ant-fashion (the faintest trace of real news in science has the action of a pheromone, lifting the hairs of workers in laboratories at the ends of the earth), but each of us also builds a private store of his own secret knowledge and hides it away like untouchable treasure. We have names to label each as self, and we believe without reservation that this system of taxonomy will guarantee the entity, the absolute separateness of each of us, but the mechanism has no discernible function in the center of a crowded city; we are essentially nameless, most of our time.

  Nobody wants to think that the rapidly expanding mass of mankind, spreading out over the surface of the earth, blackening the ground, bears any meaningful resemblance to the life of an anthill or a hive. Who would consider for a moment that the more than 3 billion of us are a sort of stupendous animal when we become linked together? We are not mindless, nor is our day-to-day behavior coded out to the last detail by our genomes, nor do we seem to be engaged together, compulsively, in any single, universal, stereotyped task analogous to the construction of a nest. If we were ever to put all our brains together in fact, to make a common mind the way the ants do, it would be an unthinkable thought, way over our heads.

  Social animals tend to keep at a particular thing, generally something huge for their size; they work at it ceaselessly under genetic instructions and genetic compulsion, using it to house the species and protect it, assuring permanence.

  There are, to be sure, superficial resemblances in some of the things we do together, like building glass and plastic cities on all the land and farming under the sea, or assembling in armies, or landing samples of ourselves on the moon, or sending memoranda into the next galaxy. We do these together without being quite sure why, but we can stop doing one thing and move to another whenever we like. We are not committed or bound by our genes to stick to one activity forever, like the wasps. Today’s behavior is no more fixed than when we tumbled out over Europe to build cathedrals in the twelfth century. At that time we were convinced that it would go on forever, that this was the way to live, but it was not; indeed, most of us have already forgotten what it was all about. Anything we do in this transient, secondary social way, compulsi
vely and with all our energies but only for a brief period of our history, cannot be counted as social behavior in the biological sense. If we can turn it on and off, on whims, it isn’t likely that our genes are providing the detailed instructions. Constructing Chartres was good for our minds, but we found that our lives went on, and it is no more likely that we will find survival in Rome plows or laser bombs, or rapid mass transport or a Mars lander, or solar power, or even synthetic protein. We do tend to improvise things like this as we go along, but it is clear that we can pick and choose.

  For practical purposes, it would probably be best for us not to be biologically social, in the long run. Not that we have a choice, or course, or even a vote. It would not be good news to learn that we are all roped together intellectually, droning away at some featureless, genetically driven collective work, building something so immense that we can never see the outlines. It seems especially hard, even perilous, for this to be the burden of a species with the unique attribute of speech, and argument. Leave this kind of life to the insects and birds, and lesser mammals, and fish.

  But there is just that one thing. About human speech.

  It begins to look, more and more disturbingly, as if the gift of language is the single human trait that marks us all genetically, setting us apart from all the rest of life. Language is, like nest-building or hive-making, the universal and biologically specific activity of human beings. We engage in it communally, compulsively, and automatically. We cannot be human without it; if we were to be separated from it our minds would die, as surely as bees lost from the hive.

  We are born knowing how to use language. The capacity to recognize syntax, to organize and deploy words into intelligible sentences, is innate in the human mind. We are programmed to identify patterns and generate grammar. There are invariant and variable structures in speech that are common to all of us. As chicks are endowed with an innate capacity to read information in the shapes of over-hanging shadows, telling hawk from other birds, we can identify the meaning of grammar in a string of words, and we are born this way. According to Chomsky, who has examined it as a biologist looks at live tissue, language “must simply be a biological property of the human mind.” The universal attributes of language are genetically set; we do not learn them, or make them up as we go along.